Effect of mineral-collagen interfacial behavior on the microdamage progression in bone using a probabilistic cohesive finite element model.
نویسندگان
چکیده
The interactions between mineral and collagen phases in the ultrastructural level play an important role in determining the mechanical properties of bone tissue. Three types of mineral-collagen interaction (i.e., ionic interactions, hydrogen/van der Waals bonds, and van der Waals/viscous shear in opening/sliding mode, respectively) have been simulated in this study, using cohesive zone-modeling techniques. Considering the inhomogeneity of bone, a probabilistic failure analysis approach has been also employed to account for the effect of mineral-collagen interfacial behavior on microdamage accumulation in lamellar bone tissues. The results of this study suggested that different interfacial behaviors cause different types of microdamage accumulation. The ionic interactions between the mineral and collagen phases lead to the formation of linear microcracks, while the van der Waals/viscous shear interactions may facilitate the formation of diffuse damage. In the case of hydrogen/van der Waals bonds, a transitional behavior of microdamage accumulation in bone was observed. The findings of this study may help in understanding the mechanisms of mineral-collagen interactions and its effects on the failure mechanism of bone.
منابع مشابه
A Cohesive Zone Model for Crack Growth Simulation in AISI 304 Steel
Stable ductile crack growth in 3 mm thick AISI 304 stainless steel specimens has been investigated experimentally and numerically. Multi-linear Isotropic Hardening method coupled with the Von-Mises yield criterion was adopted for modeling elasto-plastic behavior of the material. Mode-I CT fracture specimens have been tested to generate experimental load-displacement-crack growth data during sta...
متن کاملEvaluation of the effect of reservoir length on seismic behavior of concrete gravity dams using Monte Carlo method
In present study, the effect of reservoir length on seismic performance of concrete gravity dam has been investigated. Monte Carlo probabilistic analysis has been used to achieve a sensitivity of the responses to variation of truncated reservoir length in finite element model. The ANSYS software based on finite element method is applied for modeling and analysis. The Pine Flat dam in California...
متن کاملImmediately loaded Xive and Nisastan implants the effect of macro-design on distribution of strain in surrounding bone: A finite element analysis
Immediately loaded Xive and Nisastan implants the effect of macro-design on distribution of strain in surrounding bone: A finite element analysis Dr. A. Fazel * - Dr. SH. A. Alai ** - Dr. M. Rismanchian *** *Associate Professor of Prosthodontics Dept., Faculty of Dentistry and Dental Research Center, Tehran University / Medical Sciences. **Assistant Professor of Prosthodontics Dept., Faculty of...
متن کاملThree-Dimensional Finite Element Modeling of Stone Column-Improved Soft Saturated Ground
Installing stone columns in the ground is an effective improvement technique to increase the load bearing capacity and reduce the consolidation settlement of the loose or weak cohesive soils. In addition to the increase in the bearing capacity and reduction in the settlement, stone columns can accelerate the dissipation rate of the excess pore water pressure generated by the surcharge, which ex...
متن کاملEffect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis
This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 4 7 شماره
صفحات -
تاریخ انتشار 2011